Sound production in the longnose butterflyfishes (genus Forcipiger): cranial kinematics, muscle activity and honest signals.
نویسندگان
چکیده
Many teleost fishes produce sounds for social communication with mechanisms that do not involve swim bladder musculature. Such sounds may reflect physical attributes of the sound-production mechanism, be constrained by body size and therefore control signal reliability during agonistic behaviors. We examined kinematics of the cranium, median fins and caudal peduncle during sound production in two territorial chaetodontid butterflyfish sister species: forcepsfish (Forcipiger flavissimus) and longnose butterflyfish (F. longirostris). During intraspecific agonistic encounters, both species emit a single pulse sound that precedes rapid cranial rotation at velocities and accelerations that exceed those of prey strikes by many ram- and suction-feeding fishes. Electromyography showed that onsets of activity for anterior epaxialis, sternohyoideus, A1 and A2 adductor mandibulae muscles and sound emission are coincident but precede cranial elevation. Observations indicate that sound production is driven by epaxial muscle contraction whereas a ventral linkage between the head and pectoral girdle is maintained by simultaneous activity from the adductor mandibulae and sternohyoideus. Thus, the girdle, ribs and rostral swim bladder are pulled anteriorly before the head is released and rotated dorsally. Predictions of the hypothesis that acoustic signals are indicators of body size and kinematic performance were confirmed. Variation in forcepsfish sound duration and sound pressure level is explained partly by cranial elevation velocity and epaxial electromyogram duration. Body size, however, explains most variation in duration and sound pressure level. These observed associations indicate that forcepsfish sounds may be accurate indicators of size and condition that are related to resource holding potential during social encounters.
منابع مشابه
Diversity and evolution of sound production in the social behavior of Chaetodon butterflyfishes.
Fish produce context-specific sounds during social communication, but it is not known how acoustic behaviors have evolved in relation to specializations of the auditory system. Butterflyfishes (family Chaetodontidae) have a well-defined phylogeny and produce pulsed communication sounds during social interactions on coral reefs. Recent work indicates that two sound production mechanisms exist in...
متن کاملSound pressure enhances the hearing sensitivity of Chaetodon butterflyfishes on noisy coral reefs.
Butterflyfishes are conspicuous members of coral reefs that communicate with acoustic signals during social interactions with mates and other conspecifics. Members of the genus Chaetodon have a laterophysic connection (LC) - a unique association of anterior swim bladder horns and the cranial lateral line - but the action of the LC system on auditory sensitivity is unexplored. Here, we show in b...
متن کاملPulse sound generation, anterior swim bladder buckling and associated muscle activity in the pyramid butterflyfish, Hemitaurichthys polylepis.
Acoustic behaviors are widespread among diverse fish taxa but mechanisms of sound production are known from relatively few species, vary widely and convergent mechanisms are poorly known. We examined the sound production mechanism in the pyramid butterflyfish, Hemitaurichthys polylepis, a member of the socially and ecologically diverse reef fish family Chaetodontidae. In the field, fish produce...
متن کاملEvolution and mechanics of long jaws in butterflyfishes (family Chaetodontidae).
We analyzed the functional morphology and evolution of the long jaws found in several butterflyfishes. We used a conservative reanalysis of an existing morphological dataset to generate a phylogeny that guided our selection of seven short- and long-jawed taxa in which to investigate the functional anatomy of the head and jaws: Chaetodon xanthurus, Prognathodes falcifer (formerly Chaetodon falci...
متن کاملThe ears of butterflyfishes (Chaetodontidae): 'hearing generalists' on noisy coral reefs?
Analysis of the morphology of all three otolithic organs (sacculus, lagena and utriculus), including macula shape, hair cell morphology, density, orientation pattern, otolith morphology and the spatial relationships of the swimbladder and ear, reveals that butterflyfishes in the genera Chaetodon (which has anterior swimbladder horns) and Forcipiger (which lacks anterior swimbladder horns) both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 22 شماره
صفحات -
تاریخ انتشار 2011